苏教版六年级数学上册教案

时间:2024-07-12 22:17:42
苏教版六年级数学上册教案

作为一名为他人授业解惑的教育工作者,就不得不需要编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。教案要怎么写呢?下面是小编整理的苏教版六年级数学上册教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

苏教版六年级数学上册教案1

第一单元 方 程

教学内容:P7“回顾与整理”、“练习与应用”第1—4题

教学目标:

1、通过“回顾与整理”使学生逐步掌握一些整理知识的方法,养成对所学知识分阶段进行整理的习惯。

2、使学生进一步掌握有关方程的解法,体会到列方程解决实际问题的基本思考方法,加深对列方程解决实际问题的理解,激发学生进一步信息方程、应用方程的兴趣。

教学资源:小黑板

教学过程:

一、揭示课题

本单元,我们主要学习了有关列方程解决实际问题的知识。今天我们要将这些知识进行整理一下。

二、回顾与整理

1、出示小组讨论题:

(1)像3.4x+1.8=8.6、5x-x=24这样的方程各应怎样解?

(2)在列方程解决实际问题时,可以怎样找数量之间的相等关系?举例说明。

2、让学生围绕这两个问题进行独立思考。

3、把各自思考的情况在小小组内进行交流。

4、全班交流。

讨论题(1) 可以让学生说说首先要将这样的方程作怎样的变形,并提醒学生解方程时要养成检验的习惯。 讨论题(2)可以引导学生举例说说本单元学会了用方程解决哪些实际问题,并结合所举例子说明解决每一类问题的基本思路。

三、练习与应用

1、解方程

180+6x=330 27x+31x=145 x-0.8x=10

2.2x-1=10 15x÷2=60 4x+x=3.15

(1)让学生独立完成,指名板演。

(2)集体交流时要关注学生解这些方程的准确率,并及时引导学生总结解每一类方程的基本方法,反思解这些方程时可能遇到的问题。

2、解决实际问题

(1)南京长江大桥的铁路桥长6772米,公路桥长4589米。它的铁路桥比武汉长江大桥铁路桥的5倍多197米,公路桥比武汉长江大桥公路桥的3倍少421米。

① 武汉长江大桥铁路桥长多少米?

② 武汉长江大桥公路桥长多少米?

** 让学生认真审题,独立思考后找出相关数量之间的相等关系说一说。师随机板书:

武汉长江大桥铁路桥的长度×5+197=南京长江大桥铁路桥的长度

武汉长江大桥公路桥的长度×3-421=南京长江大桥公路桥的长度

** 问:在列方程时应该怎样表示题中的两个未知数量?

(2)练习与应用第3题

** 先让学生看图后说说了解到了哪些信息。

** 问:这棵树苗从80厘米长到104厘米,经过了几个月?你怎么知道的?

** 问:你能说说题中数量之间的相等关系吗?

(学生如有困难,教师可以画线段图帮助学生理清数量关系)

随机板书:

小树原有的高度+6个月长的高度=小树现在的高度

(3)学校印制画册一共用去1740元,其中制版费300元,其余的是印刷费。每本画册的印刷费是3.6元,学校印制了多少本画册?

** 学生读题后,教师先结合图书的印刷过程向学生介绍“制版费”和“每册印刷费”的含义,从而帮助学生理解:印制画册用去的总钱数是由两个部分组成的。一部分是制版费,另一部分是印刷费,也就是每本印刷费与本数的乘积。

** 再让学生独立解答,指名板演。

** 交流时让学生结合所列的方程说说自己的思考过程。

三、总结: 通过今天的整理与练习,你又有哪些收获?还有什么疑惑?

四、作业: P7“练习与应用”第2、3题。

苏教版六年级数学上册教案2

教学目标:

1、使学生明确本学期的学习任务。

2、使学生巩固五年级的相关知识,为新知识的学习奠定基础。

教学过程:

一、 课堂教学常规的说明:

1、上课的各项要求说明等。

2、练习的各项要求说明等。

3、其他说明。

二、 复习旧知:

(一) 填空:

1、分数单位是1/8的最大真分数是( ),最小假分数是( ),最小的带分数是( )。

2、1米的3/7是( )米,3米的1/7是( )米。

3、一座挂钟的分针长10厘米,时针长7厘米,一昼夜,分针尖端走了( )厘米,时针扫过了( )平方厘米。

(二) 解决问题:

1、一个正方形的周长与圆的周长相等,已知正方形的边长是3.14米,圆的半径是多少米?

2、把一些桃平均分给12只猴子,正好还剩1个;如果平均分给8只猴子,正好也剩1个。这些桃至少有多少个?

3、甲、乙两车从两地同时相向而行,甲车在超过中点10千米的地方与乙车相遇,已知相遇时甲车行了140千米,乙车行了多少千米?

4、一根钢管长3米,重4千克,这样的钢管每米重多少千克?1千克这样的钢管长多少米?

5、甲6分钟做13个零件,乙8分钟做17个零件,丙12分钟做25个零件,比一比,他们谁做得最快?

6、如果用两根长62.8厘米的绳子分别围成一个圆形和一个正方形,你觉得哪个图形的面积大些?大多少平方厘米?

7、将一个直径是12厘米的圆分成64等份后,拼成一个近似的长方形,这个长方形的长和宽各是多少厘米?面积是多少平方厘米?

8、一满瓶油连瓶重650克,用去一半后连瓶重400克,瓶重多少千克?油重多少克?

9、一个圆形花坛的周长是15.7米,在花坛周围铺一条宽0.5米的环形小路,这条小路的面积是多少平方米?

10、一捆电线长178米,装了8盏电灯,还剩下4米,平均每盏灯用电线多少米?(只列方程)

(三) 拓展练习:

1、某汽车站有甲、乙、丙开往三地的汽车通过,甲车每隔15分钟开过此站,乙车每隔10分钟开过此站,丙车每隔12分钟开过此站。现三辆汽车在同一时刻从此站开过后,再过多少时间又同时从此站开过?

2、(1)工人们修一段路,第一天修了公路全长的一半还多2千米,第二天修了剩下的一半还少1千米,还剩20千米没有修完。公路的全长是多少千米?

(2)有一桶油,每次抽出桶里油的一半,连续这样抽了5次后,桶里还有油10千克,求这个桶里原有油多少千克?

3、周燕有一盒巧克力糖,7粒一数还余 ……此处隐藏11372个字……法则。

我们了解了分数乘以整数的意义,你想知道怎样计算吗?

①导出计算方法。

你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转化为已经学过的旧知识来进行计算。(可以互相说、互相看。)

该怎么办呢?

引导学生讨论得出:

边加上虚线框。)

(2)根据上面方法试算下面各题。

(学生在练习本上做,用投影反馈。)

②归纳法则。

通过以上几个式题的计算,想一想分数乘以整数怎样计算呢?

师:比一比,看哪个组的同学总结的语言准确又简练。小组讨论,总结出法则。

分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)

③应用法则计算。

有不一样的吗?强调结果化成带分数。

还有不同的做法吗?

讨论,这两种方法哪种简单?为什么?

强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。

(三)巩固练习

1.看图写算式。

第3页的第1题,看图写算式。(填书上)

行间巡视,注意:被乘数和乘数的位置。

2.先说算式意义,再填空。

3.看算式,约分计算。

4.口算:

5.判断:(打手势)

(四)课堂总结

今天我们学习了什么内容?分数乘以整数的意义是什么?分数乘以整数的法则是什么?计算时应注意什么?(能约分要约分,结果是假分数,要化成整数或带分数。)

课堂教学设计说明

1.确定教学目标、教材的重点难点,它对整个教学过程具有导向、激励和评价作用。本节课的重点是分数乘以整数的意义与法则,难点是法则的推导。在设计教案中,以突出重点为中心,教法与内容设计要服务于中心。

2.依据知识的迁移,进行很必要的铺垫,利用知识之间的联系,精心设计复习题,为教学重点服务,使学生顺利掌握分数乘以整数的意义与整数乘法意义相同。同时复习分数加法,为推导公式进行铺垫。

3.重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识地让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动活泼,发挥小组的团结协作作用。在课堂上,不仅有师生之间的信息交流,而且还有同学之间的信息交流。教师根据信息反馈,及时对教学过程进行调控,以达到真正提高课堂教学的目的。

苏教版六年级数学上册教案11

实践要求:

1、经历有目的、有设计、有步骤、有合作的实践活动。

2、结合实际情境,体验发现和提出问题、分析和解决问题的过程。

3、在给定目标下,感受针对具体问题提出设计思路、制定简单的方案解决问题的过程。

4、通过应用和反思,进一步理解所用的知识和方法,了解所学知识之间的联系,获得数学活动经验。

教学内容:

冀教版小学数学六年级上册69——70页。

教学目标:

1、知识技能:学会理财,能对自己设计的理财方案作出合理的解释。

2、数学思考:如何对自己设计的理财方案作出合理的解释。

3、问题解决:可以通过比较、思考、交流的方法,经历计算对自己的理财方案作出解释。

4、情感态度:感受理财的重要性,经历运用所学的知识学习理财,培养科学、合理的理财观念。

教学重点:

学会理财,会对自己设计的理财方案作出合理的解释。

教学难点:

对自己设计的理财方案作出合理的解释。

教学流程:

一、导入

老师最近看了一套《贝贝熊系列》丛书,是关于培养孩子理财能力方面的书籍,读了以后觉得受益匪浅,在动物界,贝贝熊通过学习能做到对自己的财富有计划、合理支配,我想我们通过这一单元前面的学习,也能够对我们的财富进行支配,你们同意吗?那好,希望通过这节课,我们也能合理支配自己的财富,即掌握《学会理财》的能力。

{设计意图:通过和学生谈话,轻松引入本节课的课题}

二、任务一

设计方案,解决问题

聪聪的爸爸是一个工程师,他设计的一个工程中标后,老板奖励他8000元的奖金。再过6年聪聪就要上大学了,爸爸决定把这笔钱存入银行,留给聪聪上大学用。(存款方式为整存整取)

(1)小组合作,做出3个存钱方案。(提示:小组先商议好方案,然后写到学案上)

(2)并算每种方案可获得的利息。(根据小组制定的三种存钱方案,组长做好合理分工,计算利息,为了便于计算,我们计算利息的时候,只考虑本金)

(3)议一议:你认为那种存钱方案?为什么?

{设计意图:学生通过前面的学习,已经具备了计算利息的能力,学生能够根据聪聪家的情况,制定不同的存钱方案,进而计算每种方案的利息,从而获得一种成功的喜悦感}

三、小组汇报、展示

{在学生计算的过程中,教师巡视,发现学生有代表性的方案进行展示,重点放在解释哪种方案,即学生能对自己制定的方案进行合理的解释}

四、任务二

聪聪一家三口,妈妈每月的工资是2160元,爸爸每月的工资是4180元,爸爸的工资中还要缴纳30多元的个人所得税。过6年聪聪要上大学,请你帮聪聪家做一个零存整取的计划。

零存整取:零存整取是银行定期储蓄的一种基本类型,是指储户在进行银行存款时约定存期、每月固定存款、到期一次支取本息的一种储蓄方式。零存整取一般每月5元起存,每月存入一次,中途如有漏存,应在次月补齐,只有一次补交机会。存期一般分一年、三年和五年。

(1)计算聪聪家每个月的结余。

(2)根据聪聪家的实际情况,制定合理的存钱计划,并说明理由。

(3)按照你的存钱计划,算一下,到期能取回多少钱?

知识链接:零存整取利息计算公式是:利息=月存金额×累计月积数×月利率。

其中累计月积数=(存入次数+1)÷2×存入次数。据此推算一年期的累计月积数为(12+1)÷2×12=78,以此类推,三年期、五年期的累计月积数分别为666和1830。

五、分享收获

{设计意图:希望学生通过这节课,感受在给定目标下,针对具体问题提出设计思路、制定简单的方案解决问题的过程。}

六、课下作业

为自己的零花钱制定一个零存整取的存钱计划。

{设计意图:作为本节课知识的延续,让学生养成一个合理消费的习惯,做一个生活上有计划的人,合理支配自己的财富}

板书设计:

收入:2160+4180=6340(元)

支出:2500+800+200+160+30=3690(元)

结余:6340—3690=2650(元)

《苏教版六年级数学上册教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档